
mm inch

FEATURES

1. High frequency relay with the low profile of 4 mm .157 inch
2. Excellent high frequency characteristics

- Isolation: Min. 10 dB (at 1.8 GHz)
- Insertion loss: Max. 1.0dB (at 1.8 GHz)
- V.S.W.R.: Max. 1.3 (at 1.8 GHz)

3. High sensitivity in small size

Size: $10.6 \times 9 \times 4 \mathrm{~mm}$ $.417 \times .354 \times .157$ inch
Nominal operating power: 140 mW
4. Utilizes tube package for automatic mounting.
5. Self-clinching terminal also available

TYPICAL APPLICATIONS

- Antenna switching of mobile phone
- Switching signal of measuring equipment
- All types of compact wireless devices

SPECIFICATIONS

Contact

Arrangement		1 Form C
Contact material	Stationary	Ag + Au clad
	Movable	AgPd
Initial contact resistance, max. (By voltage drop 6 V DC 0.1 A)		$50 \mathrm{~m} \Omega$
Rating	Nominal switching capacity	$0.1 \text { A } 30 \text { V DC }$ Contact switching power: 1 W (Max. 1.8 GHz); Contact carrying power: 3 W (Max. 1.2 GHz) 1 W (Max. 1.8 GHz)
High frequency characteristics (Impedance 50』) (Initial)	V.S.W.R.	Max. 1.2 (at 1 GHz) Max. 1.3 (at 1.8 GHz)
	Insertion loss	Max. 0.5 dB (at 1 GHz) Max. 1 dB (at 1.8 GHz)
	Isolation	Min. 15 dB (at 1 GHz) Min. 10 dB (at 1.8 GHz)
Expected life (min. operations)	Mechanical (at 180 cpm)	5×10^{6}
	Electrical (at 20 cpm)	10^{5} (0.1 A 30 V DC resistive load)
		10^{5} (1 W at 1.8 GHz ; V.S.W.R.: max. 1.3)

Coil (at 25C, 68F)

Voltage type	Nominal operating power
1.5 to 12 V DC	140 mW
24 V DC	270 mW

Characteristics

Max. operating speed (at rated load)		20 cpm
Initial insulation resistance*1		Min. 1,000 M 2 at 500 V DC
Initial breakdown voltage*2	Between open contacts	750 Vrms for 1 min.
	Between contacts and coil	1,500 Vrms for 1 min .
Operate time*3 (at nominal voltage)		Max. 3 ms (Approx. 1.5 ms)
Release time(without diode) ${ }^{\star 3}$ (at nominal voltage)		Max. 2 ms (Approx. 1 ms)

Temperature rise		Max. 50Cwith nominal coil voltage across coil and at nominal switching capacity
Shock resistance	Functiona\|*4	Min. $500 \mathrm{~m} / \mathrm{s}^{2}$ \{50 G\}
	Destructive*5	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance	Functiona\|*6	10 to 55 Hz at double amplitude of 3 mm
	Destructive	$10 \text { to } 55 \mathrm{~Hz}$ at double amplitude of 5 mm
Conditions for operation, transport and storage*7 (Not freezing and condensing at low temperature)	Ambient temp.	Đ40C to 70C Đ40F to 158 F
	Humidity	5 to 85\% R.H.
Unit weight		Approx. 1 g .04 oz

Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{* 1}$ Measurement at same location as Òlnitial breakdown voltageÓ section
\star^{2} Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time
${ }^{4}$ Half-wave pulse of sine wave: 11 ms , detection time: 10 us
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms
${ }^{6}{ }^{6}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 7}$ Refer to 7 . Conditions for operation, transport and storage conditions in NOTES at the back of this data sheet.

ORDERING INFORMATION

[^0]RP
TYPES ANE COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.		Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Maximum. allowable voltage, V DC
Standard PC board terminal	Self-clinching terminal							
RP1-1.5V	RP1-H-1.5V	1.5	1.125	0.15	93.8	16	140	2.25
RP1-3V	RP1-H-3V	3	2.25	0.3	46.7	64.3	140	4.5
RP1-4.5V	RP1-H-4.5V	4.5	3.375	0.45	31.1	145	140	6.75
RP1-5V	RP1-H-5V	5	3.75	0.5	28	178	140	7.5
RP1-6V	RP1-H-6V	6	4.5	0.6	23.3	257	140	9
RP1-9V	RP1-H-9V	9	6.75	0.9	15.6	579	140	13.5
RP1-12V	RP1-H-12V	12	9	1.2	11.7	1,028	140	18
RP1-24V	RP1-H-24V	24	18	2.4	11.3	2,133	270	28.8

DIMENSIONS

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)

Deenergized condition

REFERENCE DATA

1. High frequency characteristics

- V.S.W.R

\longrightarrow Frequency, GHz
- Insertion loss

- Isolation

2. Coil temperature rise

Sample: RP1-6V; No. of samples: $\mathrm{n}=5$
Carrying current: 0.1 A
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

4. Mechanical life

Sample: RP1-5V; No. of samples: $\mathrm{n}=8$

- Change of pick-up, drop-out voltage

6. Ambient temperature characteristics

Sample: RP1-6V; No. of samples: $\mathrm{n}=5$

3. Operate/release time

Sample: RP1-9V; No. of samples: $\mathrm{n}=50$

- With diode

5. Electrical life (0.1 A 30 V DC)

Sample: RP1-6V; No. of samples: $\mathrm{n}=6$

- Change of pick-up/drop-out voltage

- Without diode

- Change of contact resistance

7. Contact resistance distribution (initial) Sample: RP1-12V; No. of samples: $\mathrm{n}=25$

Sample: RP1-12V; No. of samples: $\mathrm{n}=6$

8.-(3) Influence of adjacent mounting Sample: RP1-12V; No. of samples: $\mathrm{n}=6$

- Change of pick-up/drop-out voltage

- Change of contact resistance

usage, transport, and storage:

2) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
3) Freezing

Condensation or other moisture may freeze on the relay when the temperature is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
4) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

5. Automatic mounting

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure* in the direction A: $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less
Chucking pressure* in the direction B : $9.8 \mathrm{~N}\{1 \mathrm{kgf}$ or less
Chucking pressure* in the direction C : $9.8 \mathrm{~N}\{1 \mathrm{kgf}$ or less

Please chuck the سWIal portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

*Value of chucking pressure is shown by the value of weight pressed on the portion (4 mm .157 inch dia.).

6. Soldering

Preheat according to the following conditions.

Temperature	$120^{\circ} \mathrm{C} 248^{\circ} \mathrm{F}$ or less
Time	Within 2 minute

Soldering should be done at $260 \pm 5^{\circ} \mathrm{C}$ $500 \pm 9^{\circ} \mathrm{F}$ within 6 s .

1) Perform manual soldering under the conditions below.

- Within 10 s at $260^{\circ} \mathrm{C} 500^{\circ} \mathrm{F}$
- Within 3 s at $350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$

7. Conditions for operation, transport and storage conditions
1) Ambient temperature, humidity, and atmospheric pressure during usage, transport, and storage of the relay:
(1) Temperature:
-40 to $+70^{\circ} \mathrm{C}-40$ to $+158^{\circ} \mathrm{F}$
(2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
(3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for

[^0]: Note: Standard packing; Carton: 50 pcs. Case 1,000 pcs.

